Copied to
clipboard

?

G = C42.266D4order 128 = 27

248th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.266D4, C42.397C23, C4.1002+ (1+4), (C2×C4)⋊7SD16, C85D422C2, C4⋊C876C22, (C4×C8)⋊42C22, C4⋊Q870C22, C4⋊SD1636C2, C4.4D827C2, C4.86(C2×SD16), (C4×Q8)⋊11C22, C22⋊SD1630C2, C4⋊C4.147C23, C4.27(C8⋊C22), (C2×C4).406C24, (C2×C8).325C23, C23.690(C2×D4), (C22×C4).496D4, D4⋊C445C22, (C2×SD16)⋊42C22, (C2×D4).156C23, (C2×Q8).143C23, C22.25(C2×SD16), C2.23(C22×SD16), C42.12C443C2, C41D4.162C22, C22⋊C8.219C22, (C2×C42).873C22, C22.666(C22×D4), C22⋊Q8.191C22, (C22×C4).1077C23, (C22×D4).387C22, C23.37C2316C2, C2.77(C22.29C24), (C2×C4).866(C2×D4), C2.55(C2×C8⋊C22), (C2×C41D4).26C2, SmallGroup(128,1940)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.266D4
C1C2C4C2×C4C22×C4C22×D4C2×C41D4 — C42.266D4
C1C2C2×C4 — C42.266D4
C1C22C2×C42 — C42.266D4
C1C2C2C2×C4 — C42.266D4

Subgroups: 604 in 244 conjugacy classes, 96 normal (26 characteristic)
C1, C2 [×3], C2 [×6], C4 [×8], C4 [×6], C22, C22 [×2], C22 [×22], C8 [×4], C2×C4 [×6], C2×C4 [×4], C2×C4 [×8], D4 [×28], Q8 [×6], C23, C23 [×16], C42 [×4], C42 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×7], C2×C8 [×4], SD16 [×8], C22×C4 [×3], C2×D4 [×4], C2×D4 [×22], C2×Q8 [×2], C2×Q8, C24 [×2], C4×C8 [×2], C22⋊C8 [×2], D4⋊C4 [×8], C4⋊C8 [×2], C2×C42, C42⋊C2, C4×Q8 [×2], C4×Q8, C22⋊Q8 [×2], C22⋊Q8, C42.C2, C41D4 [×4], C41D4 [×2], C4⋊Q8 [×2], C2×SD16 [×8], C22×D4 [×2], C22×D4 [×2], C42.12C4, C22⋊SD16 [×4], C4⋊SD16 [×4], C4.4D8 [×2], C85D4 [×2], C2×C41D4, C23.37C23, C42.266D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], SD16 [×4], C2×D4 [×6], C24, C2×SD16 [×6], C8⋊C22 [×2], C22×D4, 2+ (1+4) [×2], C22.29C24, C22×SD16, C2×C8⋊C22, C42.266D4

Generators and relations
 G = < a,b,c,d | a4=b4=1, c4=d2=b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c3 >

Smallest permutation representation
On 32 points
Generators in S32
(1 10 31 19)(2 11 32 20)(3 12 25 21)(4 13 26 22)(5 14 27 23)(6 15 28 24)(7 16 29 17)(8 9 30 18)
(1 3 5 7)(2 30 6 26)(4 32 8 28)(9 24 13 20)(10 12 14 16)(11 18 15 22)(17 19 21 23)(25 27 29 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 5 13)(2 12 6 16)(3 15 7 11)(4 10 8 14)(17 32 21 28)(18 27 22 31)(19 30 23 26)(20 25 24 29)

G:=sub<Sym(32)| (1,10,31,19)(2,11,32,20)(3,12,25,21)(4,13,26,22)(5,14,27,23)(6,15,28,24)(7,16,29,17)(8,9,30,18), (1,3,5,7)(2,30,6,26)(4,32,8,28)(9,24,13,20)(10,12,14,16)(11,18,15,22)(17,19,21,23)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29)>;

G:=Group( (1,10,31,19)(2,11,32,20)(3,12,25,21)(4,13,26,22)(5,14,27,23)(6,15,28,24)(7,16,29,17)(8,9,30,18), (1,3,5,7)(2,30,6,26)(4,32,8,28)(9,24,13,20)(10,12,14,16)(11,18,15,22)(17,19,21,23)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29) );

G=PermutationGroup([(1,10,31,19),(2,11,32,20),(3,12,25,21),(4,13,26,22),(5,14,27,23),(6,15,28,24),(7,16,29,17),(8,9,30,18)], [(1,3,5,7),(2,30,6,26),(4,32,8,28),(9,24,13,20),(10,12,14,16),(11,18,15,22),(17,19,21,23),(25,27,29,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,5,13),(2,12,6,16),(3,15,7,11),(4,10,8,14),(17,32,21,28),(18,27,22,31),(19,30,23,26),(20,25,24,29)])

Matrix representation G ⊆ GL6(𝔽17)

010000
1600000
0001600
001000
000001
0000160
,
0160000
100000
0016000
0001600
000010
000001
,
5120000
550000
000001
000010
0001600
0016000
,
12120000
1250000
000010
000001
001000
000100

G:=sub<GL(6,GF(17))| [0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,5,0,0,0,0,12,5,0,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1,0,0,0],[12,12,0,0,0,0,12,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J4K4L4M4N8A···8H
order12222222224···44444448···8
size11112288882···24488884···4

32 irreducible representations

dim1111111122244
type++++++++++++
imageC1C2C2C2C2C2C2C2D4D4SD16C8⋊C222+ (1+4)
kernelC42.266D4C42.12C4C22⋊SD16C4⋊SD16C4.4D8C85D4C2×C41D4C23.37C23C42C22×C4C2×C4C4C4
# reps1144221122822

In GAP, Magma, Sage, TeX

C_4^2._{266}D_4
% in TeX

G:=Group("C4^2.266D4");
// GroupNames label

G:=SmallGroup(128,1940);
// by ID

G=gap.SmallGroup(128,1940);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,219,675,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽